ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. <0.02 cts/cm(2)/s/keV). Our consortium has both developed and tested several samples, with increasing area, in order to match the large area of the XMS (64 mm(2)) Here we show the preliminary results from the last prototype.
The cryogenic anticoincidence detector for ATHENA-XMS: preliminary results from the new prototype
Guido Torrioli;
2012
Abstract
ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. <0.02 cts/cm(2)/s/keV). Our consortium has both developed and tested several samples, with increasing area, in order to match the large area of the XMS (64 mm(2)) Here we show the preliminary results from the last prototype.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.