We analyze the capability of Hyperion spaceborne hyperspectral data for discriminating land cover in a complex natural ecosystem according to the structure of the currently used European standard classification system (CORINE Land Cover 2000). For this purpose, we used Hyperion imagery acquired over Pollino National Park (Italy). Hyperion pre-processed data (30 m spatial resolution) were classified at the pixel level using common parametric supervised classification methods. The algorithms' performance and class level accuracy were compared with those obtained for the same area using airborne hyperspectral MIVIS data (7 m spatial resolution). Moreover, in selected test areas characterized by heterogeneous land cover (as mapped by MIVIS classification) a Linear Spectral Unmixing (LSU) technique was applied to Hyperion data to derive the abundance fractions of land cover endmembers. The accuracy of the LSU analysis was evaluated using the Residual Error parameter, by comparing Hyperion LSU results with land cover fractional abundances achieved from reference data (i.e., MIVIS and air-photo classification). The results show the potential of Hyperion spaceborne hyperspectral imagery in mapping land cover and vegetation diversity up to the 4th level of the CORINE legend, even at the sub-pixel level, within a fragmented ecosystem such as that of Pollino National Park. Moreover, we defined a criterion for evaluating the Hyperion accuracy in retrieving land cover abundances at the sub-pixel scale. Sub-pixel analysis allowed us to determine the optimal threshold to select the areas on which consistent fractional land cover monitoring can be achieved using the Hyperion sensor.

Evaluation of Hyperion capability for land cover mapping in a fragmented ecosystem: A Pollino National Park, Italy case study

CAVALLI R M;CUOMO V;FUSILLI L;PASCUCCI S;POSCOLIERI M;SANTINI F
2009

Abstract

We analyze the capability of Hyperion spaceborne hyperspectral data for discriminating land cover in a complex natural ecosystem according to the structure of the currently used European standard classification system (CORINE Land Cover 2000). For this purpose, we used Hyperion imagery acquired over Pollino National Park (Italy). Hyperion pre-processed data (30 m spatial resolution) were classified at the pixel level using common parametric supervised classification methods. The algorithms' performance and class level accuracy were compared with those obtained for the same area using airborne hyperspectral MIVIS data (7 m spatial resolution). Moreover, in selected test areas characterized by heterogeneous land cover (as mapped by MIVIS classification) a Linear Spectral Unmixing (LSU) technique was applied to Hyperion data to derive the abundance fractions of land cover endmembers. The accuracy of the LSU analysis was evaluated using the Residual Error parameter, by comparing Hyperion LSU results with land cover fractional abundances achieved from reference data (i.e., MIVIS and air-photo classification). The results show the potential of Hyperion spaceborne hyperspectral imagery in mapping land cover and vegetation diversity up to the 4th level of the CORINE legend, even at the sub-pixel level, within a fragmented ecosystem such as that of Pollino National Park. Moreover, we defined a criterion for evaluating the Hyperion accuracy in retrieving land cover abundances at the sub-pixel scale. Sub-pixel analysis allowed us to determine the optimal threshold to select the areas on which consistent fractional land cover monitoring can be achieved using the Hyperion sensor.
2009
Istituto di Acustica e Sensoristica - IDASC - Sede Roma Tor Vergata
Hyperion
Hyperspectral data
Land cover mapping
MIVIS
Unmixing
File in questo prodotto:
File Dimensione Formato  
prod_5447-doc_37465.pdf

non disponibili

Descrizione: Evaluation of Hyperion capability for land cover mapping in a fragmented ecosystem: A Pollino National Park, Italy case study
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 73
social impact