Continual selection for increased milk yield for more than 40 yr, combined with the antagonistic relationship between increasing yield, somatic cell count, and fertility, have resulted in sires that may not be optimal for producing daughters for grazing systems where seasonal calving is very important. The objective of this study was to investigate the possible existence of a genotype x environment interaction (G x E) in grazing vs. confinement herds within the United States for lactation average somatic cell score (LSCS), days open (DO), days to first service (DFS), and number of services per conception (SPC). Grazing herds were defined as those that utilized grazing for at least 6 mo each year and were enrolled in Dairy Herd Improvement (DHI). Control herds were confinement DHI herds of similar size in the same states. For LSCS, the performance of daughters in grazing and control herds was examined using linear regression of LSCS on the November 2000 USDA-DHIA sire predicted transmitting abilities (PTA) for SCS. Genetic parameters for all traits were estimated using REML in a bivariate animal model that treated the same trait in different environments as different traits. Rank correlations were calculated between sires' estimated breeding values for LSCS, calculated separately for sires in both environments. The coefficient of regression of daughter LSCS on sire PTA was less in grazing herds than in control herds. The coefficient of regression for control herds was closer to expectation. Estimates of heritability were approximately 0.12 for LSCS, and less than 0.05 for the reproduction traits. Heritabilities for DO, DFS, and SPC were slightly higher for control herds. Estimates of genetic correlation for each reproductive trait between the 2 environments were high and not significantly different from unity. Generally, these traits appear to be under similar genetic control, but a lower coefficient of regression of LSCS on sire PTA for SCS in grazing herds suggests differences in daughter performance in grazing herds may be overstated based on current PTA for SCS.

Genotype x environment interaction for grazing vs. confinement. II. Health and reproduction traits.

Boettcher PJ
2004

Abstract

Continual selection for increased milk yield for more than 40 yr, combined with the antagonistic relationship between increasing yield, somatic cell count, and fertility, have resulted in sires that may not be optimal for producing daughters for grazing systems where seasonal calving is very important. The objective of this study was to investigate the possible existence of a genotype x environment interaction (G x E) in grazing vs. confinement herds within the United States for lactation average somatic cell score (LSCS), days open (DO), days to first service (DFS), and number of services per conception (SPC). Grazing herds were defined as those that utilized grazing for at least 6 mo each year and were enrolled in Dairy Herd Improvement (DHI). Control herds were confinement DHI herds of similar size in the same states. For LSCS, the performance of daughters in grazing and control herds was examined using linear regression of LSCS on the November 2000 USDA-DHIA sire predicted transmitting abilities (PTA) for SCS. Genetic parameters for all traits were estimated using REML in a bivariate animal model that treated the same trait in different environments as different traits. Rank correlations were calculated between sires' estimated breeding values for LSCS, calculated separately for sires in both environments. The coefficient of regression of daughter LSCS on sire PTA was less in grazing herds than in control herds. The coefficient of regression for control herds was closer to expectation. Estimates of heritability were approximately 0.12 for LSCS, and less than 0.05 for the reproduction traits. Heritabilities for DO, DFS, and SPC were slightly higher for control herds. Estimates of genetic correlation for each reproductive trait between the 2 environments were high and not significantly different from unity. Generally, these traits appear to be under similar genetic control, but a lower coefficient of regression of LSCS on sire PTA for SCS in grazing herds suggests differences in daughter performance in grazing herds may be overstated based on current PTA for SCS.
2004
BIOLOGIA E BIOTECNOLOGIA AGRARIA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact