knox genes encode homeodomain-containing transcription factors that are required for meristem maintenance and proper patterning of organ initiation. In plants with simple leaves, knox genes are expressed exclusively in the meristem and stem, but in dissected leaves, they are also expressed in leaf primordia, suggesting that they may play a role in the diversity of leaf form. This hypothesis is supported by the intriguing phenotypes found in gain-of-function mutations where knox gene misexpression affects leaf and petal shape. Similar phenotypes are also found in recessive mutations of genes that function to negatively regulate knox genes. KNOX proteins function as heterodimers with other homeodomains in the TALE superclass. The gibberellin and lignin biosynthetic pathways are known to be negatively regulated by KNOX proteins, which results in indeterminate cell fates.
The role of knox genes in plant development
Mele G;
2004
Abstract
knox genes encode homeodomain-containing transcription factors that are required for meristem maintenance and proper patterning of organ initiation. In plants with simple leaves, knox genes are expressed exclusively in the meristem and stem, but in dissected leaves, they are also expressed in leaf primordia, suggesting that they may play a role in the diversity of leaf form. This hypothesis is supported by the intriguing phenotypes found in gain-of-function mutations where knox gene misexpression affects leaf and petal shape. Similar phenotypes are also found in recessive mutations of genes that function to negatively regulate knox genes. KNOX proteins function as heterodimers with other homeodomains in the TALE superclass. The gibberellin and lignin biosynthetic pathways are known to be negatively regulated by KNOX proteins, which results in indeterminate cell fates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.