Enzymes adapted to cold display structures comparable with those of their meso- and thermophilic homologs but are characterized by a higher catalytic efficiency at low temperatures and by thermolability at moderate temperatures. To identify the structural factors responsible of such features, we undertook a systematic comparative analysis of several structural properties in a data set consisting of 7 cold active enzymes belonging to different structural families and 28 related structures from meso/thermophiles representing most of the structural information now available. Only high-resolution and high-quality structures were considered. Properties were calculated and then compared for each pair of 3D structures displaying different temperatures of adaptation using a temperature-weighting scheme. The significance of the resulting differences was evaluated with a statistical method. Results reveal that each protein family adopts different structural strategies to adapt to low temperatures. However, some common trends are observed: the number of ion pairs, the side-chain contribution to the exposed surface, and the apolar fraction of the buried surface show a consistent decrease with decreasing optimal temperatures.

Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes

2002

Abstract

Enzymes adapted to cold display structures comparable with those of their meso- and thermophilic homologs but are characterized by a higher catalytic efficiency at low temperatures and by thermolability at moderate temperatures. To identify the structural factors responsible of such features, we undertook a systematic comparative analysis of several structural properties in a data set consisting of 7 cold active enzymes belonging to different structural families and 28 related structures from meso/thermophiles representing most of the structural information now available. Only high-resolution and high-quality structures were considered. Properties were calculated and then compared for each pair of 3D structures displaying different temperatures of adaptation using a temperature-weighting scheme. The significance of the resulting differences was evaluated with a statistical method. Results reveal that each protein family adopts different structural strategies to adapt to low temperatures. However, some common trends are observed: the number of ion pairs, the side-chain contribution to the exposed surface, and the apolar fraction of the buried surface show a consistent decrease with decreasing optimal temperatures.
2002
Istituto di Biologia e Patologia Molecolari - IBPM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact