Elastic and quasielastic neutron scattering experiments have been used to investigate the dynamics of methyl groups in a protein-model hydrophobic peptide in solution. The results suggest that, when the hydrophobic side chains are hydrated by a single hydration water layer, the only allowed motions are confined and attributed to librational and rotational movement associated with the methyl groups. They provide unique experimental evidence that the structural and dynamical properties of the interfacial water strongly influence the side-chain dynamics and the activation of diffusive motion.

Effects of hydration water on protein methyl group dynamics in solution

Russo D;
2007

Abstract

Elastic and quasielastic neutron scattering experiments have been used to investigate the dynamics of methyl groups in a protein-model hydrophobic peptide in solution. The results suggest that, when the hydrophobic side chains are hydrated by a single hydration water layer, the only allowed motions are confined and attributed to librational and rotational movement associated with the methyl groups. They provide unique experimental evidence that the structural and dynamical properties of the interfacial water strongly influence the side-chain dynamics and the activation of diffusive motion.
2007
INFM
ELASTIC NEUTRON-SCATTERING
TRANSITION
PROBE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact