Ligand-exchange reactions of the aminodiphosphine ligand bis[(2-diphenylphosphino)ethyl]amine hydrochloride (PNHP· HCl) with labile M(NPh)Cl3(PPh3)2 precursors (M = Re, Tc) in the presence of triethylamine yield monocationic phenylimido mer,cis-[M(NPh)Cl2(PNHP)]Cl (M = Re, 1; Tc, 2) intermediate complexes. X-ray analyses show that in both compounds the aminodiphosphine acts as a tridentate ligand dictating a mer,cis arrangement. Two chloride ligands, respectively in an equatorial and in the axial position trans to the linear M-NPh moiety, fill the remaining positions in a distorted-octahedral geometry. The chloride trans to the metal-imido core is labile, and is replaced by an alcoholate group, without affecting the original geometry, as established in mer,cis-[Re(NPh)(OEt)Cl(PNHP)]Cl 4. Otherwise, ligand-exchange reactions involving the aminodiphosphine bis[(2-diphenylphosphino)ethyl]methylamine (PNMeP), in which the central secondary amine has been replaced by a tertiary amine function, or its hydrochloride salt (PNMeP·HCl) give rise to three different species, depending on the experimental conditions: fac,cis-[Re(NPh)Cl2(PNMeP)]Cl 3a, cis,fac-Re(NPh)Cl 3(PNMeP)·HCl 3b, and mer,trans-[Re(NPh)Cl2(PNMeP)] Cl 3c, which are characterized in solution by multinuclear NMR studies. The monodentate groups incorporated in these intermediate compounds, either halides and/or ethoxide, undergo substitution reactions with bidentate donor ligands such as catechol, ethylene glycol, and 1,2-aminophenol to afford stable mixed ligand complexes of the type [M(NPh)(O,O-cat)(PNP)]Cl [PNP = PNHP M = Re 5, Tc 6; PNP = PNMeP M = Re 7], [Re(NPh)(O,O-gly)(PNP)]Cl [PNP = PNHP 8, PNMeP 9] and [Re(NPh)(O,N-ap)(PNMeP)]Cl 10. X-ray diffraction analyses of the representative compounds 5 and 8 reveal that the aminodiphosphine switches from the meridional to the facial coordination mode placing the heteroatom of the diphosphine trans to the phenylimido unit and the bidentate ligand in the equatorial plane. Solution-state NMR studies suggest an analogous geometry for 6, 7, 9, and 10. Comparison with similar mixed ligand complexes including the terminal nitrido group is discussed. © 2005 American Chemical Society

New approach to the chemistry of technetium(V) and rhenium(V) phenylimido complexes: novel [M(NPh)PNP]3+ metal fragments (M = Tc, Re; PNP = aminodiphosphine) suitable for the synthesis of stable mixed-ligand compounds

Porchia M;Tisato F;Refosco F;Bolzati C;
2005

Abstract

Ligand-exchange reactions of the aminodiphosphine ligand bis[(2-diphenylphosphino)ethyl]amine hydrochloride (PNHP· HCl) with labile M(NPh)Cl3(PPh3)2 precursors (M = Re, Tc) in the presence of triethylamine yield monocationic phenylimido mer,cis-[M(NPh)Cl2(PNHP)]Cl (M = Re, 1; Tc, 2) intermediate complexes. X-ray analyses show that in both compounds the aminodiphosphine acts as a tridentate ligand dictating a mer,cis arrangement. Two chloride ligands, respectively in an equatorial and in the axial position trans to the linear M-NPh moiety, fill the remaining positions in a distorted-octahedral geometry. The chloride trans to the metal-imido core is labile, and is replaced by an alcoholate group, without affecting the original geometry, as established in mer,cis-[Re(NPh)(OEt)Cl(PNHP)]Cl 4. Otherwise, ligand-exchange reactions involving the aminodiphosphine bis[(2-diphenylphosphino)ethyl]methylamine (PNMeP), in which the central secondary amine has been replaced by a tertiary amine function, or its hydrochloride salt (PNMeP·HCl) give rise to three different species, depending on the experimental conditions: fac,cis-[Re(NPh)Cl2(PNMeP)]Cl 3a, cis,fac-Re(NPh)Cl 3(PNMeP)·HCl 3b, and mer,trans-[Re(NPh)Cl2(PNMeP)] Cl 3c, which are characterized in solution by multinuclear NMR studies. The monodentate groups incorporated in these intermediate compounds, either halides and/or ethoxide, undergo substitution reactions with bidentate donor ligands such as catechol, ethylene glycol, and 1,2-aminophenol to afford stable mixed ligand complexes of the type [M(NPh)(O,O-cat)(PNP)]Cl [PNP = PNHP M = Re 5, Tc 6; PNP = PNMeP M = Re 7], [Re(NPh)(O,O-gly)(PNP)]Cl [PNP = PNHP 8, PNMeP 9] and [Re(NPh)(O,N-ap)(PNMeP)]Cl 10. X-ray diffraction analyses of the representative compounds 5 and 8 reveal that the aminodiphosphine switches from the meridional to the facial coordination mode placing the heteroatom of the diphosphine trans to the phenylimido unit and the bidentate ligand in the equatorial plane. Solution-state NMR studies suggest an analogous geometry for 6, 7, 9, and 10. Comparison with similar mixed ligand complexes including the terminal nitrido group is discussed. © 2005 American Chemical Society
2005
CHIMICA INORGANICA E DELLE SUPERFICI
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
rhenium
technetium
phenylimido complexes
X-ray
File in questo prodotto:
File Dimensione Formato  
prod_18321-doc_9568.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Dimensione 193.41 kB
Formato Adobe PDF
193.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact