A tetra- and a hepta-homopeptide from the C-alpha-tetrasubstituted Aib (alpha-aminoisobutyric acid) residue were covalently linked to the POEPOP resin by the fragment-condensation approach. The conformational preferences of the two model peptides were determined for the first time on a solid support by means of high-resolution magic angle spinning NMR spectroscopy. The results obtained indicate that the Aib homopeptides adopt a regular 3(10)-helical structure even when they are covalently bound to a polymeric matrix, and thus confirm the remarkable conformational stability of the peptides rich in this amino acid. An ATR-FTIR spectroscopic investigation, performed in parallel, also confirmed that these polymer-bound peptides do indeed adopt a helical conformation. The results of this study open the possibility to exploit the peptide-resin conjugates based on C-alpha-tetrasubstituted a-amino acids as helpful, structurally organized templates in molecular recognition studies or as catalysts in asymmetric synthesis.

Characterization of the 3-10-helix in model peptides by HRMAS NMR spectroscopy

2003

Abstract

A tetra- and a hepta-homopeptide from the C-alpha-tetrasubstituted Aib (alpha-aminoisobutyric acid) residue were covalently linked to the POEPOP resin by the fragment-condensation approach. The conformational preferences of the two model peptides were determined for the first time on a solid support by means of high-resolution magic angle spinning NMR spectroscopy. The results obtained indicate that the Aib homopeptides adopt a regular 3(10)-helical structure even when they are covalently bound to a polymeric matrix, and thus confirm the remarkable conformational stability of the peptides rich in this amino acid. An ATR-FTIR spectroscopic investigation, performed in parallel, also confirmed that these polymer-bound peptides do indeed adopt a helical conformation. The results of this study open the possibility to exploit the peptide-resin conjugates based on C-alpha-tetrasubstituted a-amino acids as helpful, structurally organized templates in molecular recognition studies or as catalysts in asymmetric synthesis.
2003
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact