The present paper proposes a novel algorithm to detect the free-surface in particle simulations, both in two and three dimensions. Since the proposed algorithms are based on SPH interpolations their implementation does not require complex geometrical procedures. Thus the free-surface detection can be easily embedded in SPH solvers, without a significant increase of the CPU time. Throughout this procedure accurate normal vectors to the free-surface are made available. Then it is possible to define a level-set function algo- rithm which is presented in detail. The latter allows in-depth analyses of three-dimensional free-surface simulations by using standard visualization tools, including internal features of the flow. The algorithms proposed for detecting free-surface particles and defining the level-set function are validated on simple and complex two- and three-dimensional flow simulations. The usefulness of the proposed procedures to post-process and analyze complex flows are illustrated on realistic examples.
Fast free-surface detection and level-set function definition in SPH solvers
2010
Abstract
The present paper proposes a novel algorithm to detect the free-surface in particle simulations, both in two and three dimensions. Since the proposed algorithms are based on SPH interpolations their implementation does not require complex geometrical procedures. Thus the free-surface detection can be easily embedded in SPH solvers, without a significant increase of the CPU time. Throughout this procedure accurate normal vectors to the free-surface are made available. Then it is possible to define a level-set function algo- rithm which is presented in detail. The latter allows in-depth analyses of three-dimensional free-surface simulations by using standard visualization tools, including internal features of the flow. The algorithms proposed for detecting free-surface particles and defining the level-set function are validated on simple and complex two- and three-dimensional flow simulations. The usefulness of the proposed procedures to post-process and analyze complex flows are illustrated on realistic examples.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.