The dynamics of lysozyme in the picosecond timescale has been studied when it is in dry and hydrated powder form and when it is embedded in glycerol, glycerol-water, glucose and glucose-water matrices. The investigation has been undertaken through elastic neutron scattering technique on the backscattering spectrometer IN13. The dynamics of dry powder and embedded-in-glucose lysozyme can be considered purely vibrational up to 100 K, where the onset of an anharmonic contribution takes place. This contribution can be attributed to the activation of methyl group reorientations and is described with an Arrhenius trend. An additional source of anharmonic dynamics appears at higher temperatures for lysozyme in hydrated powders and embedded in glycerol, glycerol-water and glucose-water matrices. This second process, also represented with an Arrhenius trend, corresponds to the so-called protein dynamical transition. Both the temperature where such a transition takes place and the magnitude of the protein mean square displacements depend on the environment. The dynamical response of the protein to temperature is put in relationship with its thermal stability.

Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering

A De Francesco;
2006

Abstract

The dynamics of lysozyme in the picosecond timescale has been studied when it is in dry and hydrated powder form and when it is embedded in glycerol, glycerol-water, glucose and glucose-water matrices. The investigation has been undertaken through elastic neutron scattering technique on the backscattering spectrometer IN13. The dynamics of dry powder and embedded-in-glucose lysozyme can be considered purely vibrational up to 100 K, where the onset of an anharmonic contribution takes place. This contribution can be attributed to the activation of methyl group reorientations and is described with an Arrhenius trend. An additional source of anharmonic dynamics appears at higher temperatures for lysozyme in hydrated powders and embedded in glycerol, glycerol-water and glucose-water matrices. This second process, also represented with an Arrhenius trend, corresponds to the so-called protein dynamical transition. Both the temperature where such a transition takes place and the magnitude of the protein mean square displacements depend on the environment. The dynamical response of the protein to temperature is put in relationship with its thermal stability.
2006
INFM
GLASS-TRANSITION
GLOBULAR-PROTEINS
INTERNAL DYNAMICS
SOLVENT
TEMPERATURE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/161250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact