Several studies highlight the need for appropriate statistical and probabilistic tools to analyze the data provided by the participants in an interlaboratory comparison. In some temperature comparisons, where the measurand is a physical state, independent realizations of the same physical state are acquired in each participating institute, which should be considered as belonging to a single super-population. This paper introduces the use of a probabilistic tool, a mixture of probability distributions, to represent the overall population in such a temperature comparison. This super-population is defined by combining the local populations in given proportions. The mixture density function identifies the total data variability, and the key comparison reference value has a natural definition as the expectation value of this probability density.
The use of a mixture of probability distributions in temperature interlaboratory comparisons
Ciarlini P;Regoliosi G
2004
Abstract
Several studies highlight the need for appropriate statistical and probabilistic tools to analyze the data provided by the participants in an interlaboratory comparison. In some temperature comparisons, where the measurand is a physical state, independent realizations of the same physical state are acquired in each participating institute, which should be considered as belonging to a single super-population. This paper introduces the use of a probabilistic tool, a mixture of probability distributions, to represent the overall population in such a temperature comparison. This super-population is defined by combining the local populations in given proportions. The mixture density function identifies the total data variability, and the key comparison reference value has a natural definition as the expectation value of this probability density.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.