In this paper we introduce a modified lattice Boltzmann model (LBM) with the capability of mimicking a fluid system with dynamic heterogeneities. The physical system is modeled as a one-dimensional fluid, interacting with finite-lifetime moving obstacles. Fluid motion is described by a lattice Boltzmann equation and obstacles are randomly distributed semi-permeable barriers which constrain the motion of the fluid particles. After a lifetime delay, obstacles move to new random positions. It is found that the non-linearly coupled dynamics of the fluid and obstacles produces heterogeneous patterns in fluid density and non-exponential relaxation of two-time autocorrelation function.
A Lattice Boltzmann model with random dynamical constraints,
A Lamura;S Succi
2004
Abstract
In this paper we introduce a modified lattice Boltzmann model (LBM) with the capability of mimicking a fluid system with dynamic heterogeneities. The physical system is modeled as a one-dimensional fluid, interacting with finite-lifetime moving obstacles. Fluid motion is described by a lattice Boltzmann equation and obstacles are randomly distributed semi-permeable barriers which constrain the motion of the fluid particles. After a lifetime delay, obstacles move to new random positions. It is found that the non-linearly coupled dynamics of the fluid and obstacles produces heterogeneous patterns in fluid density and non-exponential relaxation of two-time autocorrelation function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


