We present a computational approach for the WKB approximation of the wavefunction of an electron moving in a periodic one-dimensional crystal lattice by means of a nonstrictly hyperbolic system whose flux function stems from the Bloch spectrum of the Schrodinger operator. This second part focuses on the handling of the source terms which originate from adding a slowly varying exterior potential. Physically, relevant examples are the occurrence of Bloch oscillations in case it is linear, a quadratic one modelling a confining field and the harmonic Coulomb term resulting from the inclusion of a ''donor impurity'' inside an otherwise perfectly homogeneous lattice.
Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice, II. Impurities, confinement and Bloch oscillations.
Gosse L
2004
Abstract
We present a computational approach for the WKB approximation of the wavefunction of an electron moving in a periodic one-dimensional crystal lattice by means of a nonstrictly hyperbolic system whose flux function stems from the Bloch spectrum of the Schrodinger operator. This second part focuses on the handling of the source terms which originate from adding a slowly varying exterior potential. Physically, relevant examples are the occurrence of Bloch oscillations in case it is linear, a quadratic one modelling a confining field and the harmonic Coulomb term resulting from the inclusion of a ''donor impurity'' inside an otherwise perfectly homogeneous lattice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


