We present a computational approach for the WKB approximation of the wavefunction of an electron moving in a periodic one-dimensional crystal lattice by means of a nonstrictly hyperbolic system whose flux function stems from the Bloch spectrum of the Schrodinger operator. This second part focuses on the handling of the source terms which originate from adding a slowly varying exterior potential. Physically, relevant examples are the occurrence of Bloch oscillations in case it is linear, a quadratic one modelling a confining field and the harmonic Coulomb term resulting from the inclusion of a ''donor impurity'' inside an otherwise perfectly homogeneous lattice.

Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice, II. Impurities, confinement and Bloch oscillations.

Gosse L
2004

Abstract

We present a computational approach for the WKB approximation of the wavefunction of an electron moving in a periodic one-dimensional crystal lattice by means of a nonstrictly hyperbolic system whose flux function stems from the Bloch spectrum of the Schrodinger operator. This second part focuses on the handling of the source terms which originate from adding a slowly varying exterior potential. Physically, relevant examples are the occurrence of Bloch oscillations in case it is linear, a quadratic one modelling a confining field and the harmonic Coulomb term resulting from the inclusion of a ''donor impurity'' inside an otherwise perfectly homogeneous lattice.
2004
Istituto Applicazioni del Calcolo ''Mauro Picone''
Semiclassical limit
Periodic potential
Homogenization
Vlasov equation
Nonstrictly hyperbolic systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/161610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact