It is shown that homogeneous Rayleigh-Bénard flow, i.e., Rayleigh-Bénard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family of exact, exponentially growing, separable solutions of the full nonlinear system of equations. These solutions are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that limit their growth to produce statistically steady turbulent transport.

Exponentially growing solutions in homogeneous Rayleigh-Bénard convection

Toschi F
2006

Abstract

It is shown that homogeneous Rayleigh-Bénard flow, i.e., Rayleigh-Bénard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family of exact, exponentially growing, separable solutions of the full nonlinear system of equations. These solutions are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that limit their growth to produce statistically steady turbulent transport.
2006
Istituto Applicazioni del Calcolo ''Mauro Picone''
turbulence
rayleigh-benard
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/161626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact