By resorting to the thick-chain model we discuss how the stretching response of a polymer is influenced by the self-avoidance entailed by its finite thickness. The characterization of the force versus extension curve for a thick chain is carried out through extensive stochastic simulations. The computational results are captured by an analytic expression that is used to fit experimental stretching measurements carried out on DNA and single-stranded RNA (poly-U) in various solutions. This strategy allows us to infer the apparent diameter of two biologically relevant polyelectrolytes, namely DNA and poly-U, for different ionic strengths. Due to the very different degrees of flexibility of the two molecules, the results provide insight into how the apparent diameter is influenced by the interplay between the (solution-dependent) Debye screening length and the polymers' 'bare' thickness. For DNA, the electrostatic contribution to the effective radius, Delta, is found to be about five times larger than the Debye screening length, consistent with previous theoretical predictions for highly charged stiff rods. For the more flexible poly-U chains the electrostatic contribution to Delta is found to be significantly smaller than the Debye screening length.

Inferring the effective thickness of polyelectrolytes from stretching measurements at various ionic strengths: applications to DNA and RNA

Micheletti C
2006

Abstract

By resorting to the thick-chain model we discuss how the stretching response of a polymer is influenced by the self-avoidance entailed by its finite thickness. The characterization of the force versus extension curve for a thick chain is carried out through extensive stochastic simulations. The computational results are captured by an analytic expression that is used to fit experimental stretching measurements carried out on DNA and single-stranded RNA (poly-U) in various solutions. This strategy allows us to infer the apparent diameter of two biologically relevant polyelectrolytes, namely DNA and poly-U, for different ionic strengths. Due to the very different degrees of flexibility of the two molecules, the results provide insight into how the apparent diameter is influenced by the interplay between the (solution-dependent) Debye screening length and the polymers' 'bare' thickness. For DNA, the electrostatic contribution to the effective radius, Delta, is found to be about five times larger than the Debye screening length, consistent with previous theoretical predictions for highly charged stiff rods. For the more flexible poly-U chains the electrostatic contribution to Delta is found to be significantly smaller than the Debye screening length.
2006
INFM
ELECTROS
SEMIFLEXIBLE POLYMERS
MOLECULAR-DYNAMICS
SELF-INTERACTIONS
ELASTICITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/162321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact