The objective of this paper is the derivation and the analysis of a simple explicit numerical scheme for general one-dimensional filtration equations. It is based on an alternative formulation of the problem using the pseudoinverse of the density's repartition function. In particular, the numerical approximations can be proven to satisfy a contraction property for a Wasserstein metric. Various numerical results illustrate the ability of this numerical process to capture the time-asymptotic decay towards self-similar solutions even for fast-diffusion equations.

Identification of Asymptotic Decay to Self-Similarity for One-Dimensional Filtration Equations

Gosse L;
2006

Abstract

The objective of this paper is the derivation and the analysis of a simple explicit numerical scheme for general one-dimensional filtration equations. It is based on an alternative formulation of the problem using the pseudoinverse of the density's repartition function. In particular, the numerical approximations can be proven to satisfy a contraction property for a Wasserstein metric. Various numerical results illustrate the ability of this numerical process to capture the time-asymptotic decay towards self-similar solutions even for fast-diffusion equations.
2006
Istituto Applicazioni del Calcolo ''Mauro Picone''
degenerate parabolic equation
porous medium equation
Wasserstein metric
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/162508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 46
social impact