A priori estimates for solutions to homogeneous Neumann problems for uniformly elliptic equations in open subsets ­ of R^n are established, with data in the limiting space L^{n\2} or, more generally, in the Lorentz spaces L^{n\2, q}(\Omega). These estimates are optimal as far as either constants or norms are concerned.

Bordeline sharp estimates for solutions to nonlinear elliptic problems

Alberico A;
2007

Abstract

A priori estimates for solutions to homogeneous Neumann problems for uniformly elliptic equations in open subsets ­ of R^n are established, with data in the limiting space L^{n\2} or, more generally, in the Lorentz spaces L^{n\2, q}(\Omega). These estimates are optimal as far as either constants or norms are concerned.
2007
Istituto Applicazioni del Calcolo ''Mauro Picone''
Elliptic equations
boundary value problems
Moser inequality
Orlicz spaces
Lorentz spaces..
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/162566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact