Previous observations reported by our group indicate that 2.45 GHz microwave fields at specific absorption rate (SAR) of 5.6 W/kg reduce the enzyme activity rate of ascorbate oxidase (AO) trapped in liposomes.In this study, we report dose-response studies on these AO containing liposomes irradiated at different SAR values (1.4, 2.8, 4.2 and 5.6 W/kg. No response was observed for SAR below 5.6 W/kg. Liposomes entrapping functional AO in its deglycated form (AO-D) were also used. In this case, no MW related enzyme activity changes were observed, demonstrating a direct involvement of oligosaccharide chains of AO. Furthermore, the catalytic properties of both AO and AO-D were not impaired bu MW irradiation, neither in homogeneous solution nor loaded in liposomes, excluding possible changes in the conformation of enzyme as a mechanism. Our results suggest that the oligosaccharide chains of AO are critical to elicit the microwave observed effects on lipid membrane.

Effects of 2.45 GHz Microwave Fields on Liposomes Entrapping Glycoenzyme Ascorbate Oxidase: Evidence for Oligosaccharide Side Chain Involvement

Ramundo Orlando Alfonsina;
2004

Abstract

Previous observations reported by our group indicate that 2.45 GHz microwave fields at specific absorption rate (SAR) of 5.6 W/kg reduce the enzyme activity rate of ascorbate oxidase (AO) trapped in liposomes.In this study, we report dose-response studies on these AO containing liposomes irradiated at different SAR values (1.4, 2.8, 4.2 and 5.6 W/kg. No response was observed for SAR below 5.6 W/kg. Liposomes entrapping functional AO in its deglycated form (AO-D) were also used. In this case, no MW related enzyme activity changes were observed, demonstrating a direct involvement of oligosaccharide chains of AO. Furthermore, the catalytic properties of both AO and AO-D were not impaired bu MW irradiation, neither in homogeneous solution nor loaded in liposomes, excluding possible changes in the conformation of enzyme as a mechanism. Our results suggest that the oligosaccharide chains of AO are critical to elicit the microwave observed effects on lipid membrane.
2004
NEUROBIOLOGIA E MEDICINA MOLECOLARE
microwave fields
SAR
liposomes
ascorbate oxidase
glycoprotein
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/162943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact