The aim of the present study was to investigate the neural mechanisms of stimulus orientation selection in humans by recording event-related potentials (ERPs) of the brain with a 32-channel montage. Stimuli were isoluminant black-and-white gratings (3 cpd) having an orientation of 50, 70, 90, 110 and 130, randomly presented in the foveal portion (2 of visual angle) of the central visual field. The task consisted in selectively attending and responding to one of the five grating orientations, while ignoring the others. ERP results showed that orientation selection affected neural processing starting already at an early post-stimulus latency. The P1 component (80-140 ms) measured at temporal area, which might well be reflecting the activity of the ventral stream (i.e. 'WHAT' system) of the visual pathways, showed an enhanced amplitude for target orientations. These effects increased with progressive neural processing over time as reflected by selection negativity (SN) and P300 components. In addition, both reaction times (RTs) and ERPs showed a strong 'oblique' effect, very probably reflecting the perceptual predominance of orthogonal versus oblique stimulus orientation in the human visual system: RTs were much faster, and SN and P300 components much larger, to gratings presented vertically than in other orientations.

Early involvement of temporal area in attentional selection of grating orientation: an ERP study

Zani A
2002

Abstract

The aim of the present study was to investigate the neural mechanisms of stimulus orientation selection in humans by recording event-related potentials (ERPs) of the brain with a 32-channel montage. Stimuli were isoluminant black-and-white gratings (3 cpd) having an orientation of 50, 70, 90, 110 and 130, randomly presented in the foveal portion (2 of visual angle) of the central visual field. The task consisted in selectively attending and responding to one of the five grating orientations, while ignoring the others. ERP results showed that orientation selection affected neural processing starting already at an early post-stimulus latency. The P1 component (80-140 ms) measured at temporal area, which might well be reflecting the activity of the ventral stream (i.e. 'WHAT' system) of the visual pathways, showed an enhanced amplitude for target orientations. These effects increased with progressive neural processing over time as reflected by selection negativity (SN) and P300 components. In addition, both reaction times (RTs) and ERPs showed a strong 'oblique' effect, very probably reflecting the perceptual predominance of orthogonal versus oblique stimulus orientation in the human visual system: RTs were much faster, and SN and P300 components much larger, to gratings presented vertically than in other orientations.
2002
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/163066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 35
social impact