The role of the microfilaments and microtubules cytoskeleton in the stability of the subcellular distribution and function of GABAA receptors has been studied in rat cerebellar granule cells in culture. The disruption of either the microfilaments or the microtubules structures did not result in detectable changes in the receptors distribution, as assessed by immunocytochemistry, or in their function, as assessed by the whole-cell patch-clamp approach. A distinct disruption of both the subcellular distribution and the function of the GABAA receptors was found only if both microfilaments and microtubules were destroyed. The results suggest that, in the short term, the plasma membrane localization/stabilization and function of these receptors in granule cells are largely independent from microfilaments and microtubules individually, although they obviously depend on the presence of an organized cellular framework.

The combined disruption of microfilaments and microtubules affects the distribution and function of GABA-A receptors in rat cerebellum granule cells in culture.

2004

Abstract

The role of the microfilaments and microtubules cytoskeleton in the stability of the subcellular distribution and function of GABAA receptors has been studied in rat cerebellar granule cells in culture. The disruption of either the microfilaments or the microtubules structures did not result in detectable changes in the receptors distribution, as assessed by immunocytochemistry, or in their function, as assessed by the whole-cell patch-clamp approach. A distinct disruption of both the subcellular distribution and the function of the GABAA receptors was found only if both microfilaments and microtubules were destroyed. The results suggest that, in the short term, the plasma membrane localization/stabilization and function of these receptors in granule cells are largely independent from microfilaments and microtubules individually, although they obviously depend on the presence of an organized cellular framework.
2004
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
Granuli cerebellari
cytoskeleton,
recettori GABA A,
regolazione
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/163248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact