The Bohr effect, i.e. the pH dependence of the oxygen affinity of haemoglobins (Hbs) from a variety of vertebrates, and its modulation by temperature and other heterotropic effectors has been reviewed. Haemoglobins from vertebrates were not reviewed following the usual classification (i.e. mammals, birds, etc.); instead we have selected several key examples of animals, which are confronted with a similar environmental situation therefore displaying a similar life style. Hence, the paper starts from a description of the general concepts at the basis of the Bohr effect as exemplified by human HbA and goes towards the analysis of the modulation mechanisms which have been observed in different animals in response to the needs induced by: (i) life in cold environments; (ii) diving behaviour; (iii) flight; and (iv) aquatic life. The emerging picture indicates a complex organization of the information contained in the Hb molecule, the oxygen-binding properties of which depend both on the intrinsic characteristics of the protein and on its heterotropic interactions with ligands such as protons (Bohr effect), small anions like chloride and organic phosphates. In addition, each one of the functional effects induced by binding of a given effector appears to be under the strict control of temperature that enhances or decreases its relative weight with respect to all the others. It is just by this sophisticated network of interactions that the Hb molecule is able to satisfy the physiological requirements of a multitude of organisms without changing dramatically its quaternary structure.

The Bohr effect of haemoglobin in vertebrates: an example o molecular adaptation to different physiological requirements

Bruno Giardina;Maria Cristina De Rosa
2004

Abstract

The Bohr effect, i.e. the pH dependence of the oxygen affinity of haemoglobins (Hbs) from a variety of vertebrates, and its modulation by temperature and other heterotropic effectors has been reviewed. Haemoglobins from vertebrates were not reviewed following the usual classification (i.e. mammals, birds, etc.); instead we have selected several key examples of animals, which are confronted with a similar environmental situation therefore displaying a similar life style. Hence, the paper starts from a description of the general concepts at the basis of the Bohr effect as exemplified by human HbA and goes towards the analysis of the modulation mechanisms which have been observed in different animals in response to the needs induced by: (i) life in cold environments; (ii) diving behaviour; (iii) flight; and (iv) aquatic life. The emerging picture indicates a complex organization of the information contained in the Hb molecule, the oxygen-binding properties of which depend both on the intrinsic characteristics of the protein and on its heterotropic interactions with ligands such as protons (Bohr effect), small anions like chloride and organic phosphates. In addition, each one of the functional effects induced by binding of a given effector appears to be under the strict control of temperature that enhances or decreases its relative weight with respect to all the others. It is just by this sophisticated network of interactions that the Hb molecule is able to satisfy the physiological requirements of a multitude of organisms without changing dramatically its quaternary structure.
2004
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_17242-doc_3396.pdf

non disponibili

Descrizione: The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements
Dimensione 558 kB
Formato Adobe PDF
558 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/163484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact