The anatase phase of TiO2 is the most promising photocatalyst for organic pollutants degradation. However, due to the large anatase band gap energy the possibility of using visible sunlight as energy source for the photocalatysis activation is ruled out and ultraviolet (UV) radiation with a wave length below the critical limit is thus required. Inducing defects in the anatase crystalline structure in the form of oxygen substoichiometry may theoretically reduce this large band gap energy. This paper focuses on the determination of the stoichiometry of TiO2 thin films and its influence on the photodegradation properties.
RBS analysis of substoichiometric TiO2-anatase thin films for visible-light photocatalysis
R Gerbasi;
2006
Abstract
The anatase phase of TiO2 is the most promising photocatalyst for organic pollutants degradation. However, due to the large anatase band gap energy the possibility of using visible sunlight as energy source for the photocalatysis activation is ruled out and ultraviolet (UV) radiation with a wave length below the critical limit is thus required. Inducing defects in the anatase crystalline structure in the form of oxygen substoichiometry may theoretically reduce this large band gap energy. This paper focuses on the determination of the stoichiometry of TiO2 thin films and its influence on the photodegradation properties.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_18356-doc_12681.pdf
solo utenti autorizzati
Descrizione: RBS analysis of substoichiometric TiO2-anatase thin films for visible-light photocatalysis
Dimensione
114.59 kB
Formato
Adobe PDF
|
114.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


