Mono-cationic nitrido heterocomplexes of general formula [M(N)(DTC)(PNP)]+ (where M is 99Tc or Re, DTC is the mono-anionic form of a dithiocarbamate ligand, and PNP is a diphosphane ligand with a tertiary amine-containing five-membered spacer) were prepared by ligand-exchange reactions with the labile precursors [M(N)Cl2(PPh3)2] in dichloromethane/alcohol mixtures. The molecular structure of the representative rhenium complex [Re(N)(dedc)(pnp2)][PF6] (1) displays a distorted, square-pyramidal geometry with the dithiocarbamate sulfur and the diphosphane phosphorus atoms spanning the four coordination positions on the equatorial plane. If the additional interactions between the nitrido nitrogen and the weakly bonded trans N-diphosphane heteroatom, the molecular geometry can be viewed as pseudo-octahedral. The structure in solution, as established by multinuclear NMR spectroscopy and ESI spectrometry, is monomeric, and identical to that shown in the solid state. Replacement of the phenyl groups on the phosphorous atoms in complexes 1, 2, 5, and 6 with alkyl groups modified neither the course of the reaction nor the composition of the resulting complexes. These results, together with the observation that no symmetrical complexes containing two identical bidentate ligands were produced in these reactions, strongly supports the conclusion that a mixed coordination sphere, composed by a combination of -donor and -acceptor atoms around the [MN]2+ group, constitutes a highly stable system. Compounds containing dangling alkyl-substituted groups in the outer sphere (3, 4, 7, and 8) were fully characterized by multinuclear NMR spectroscopy and ESI mass spectrometry.

Synthesis, solution-state and solid-state structural characterization of monocationic nitrido heterocomplexes [M(N)(DTC(PNP)](+) (M=Tc-99, Re; DTC = dithiocarbamate; PNP=heterodiphosphane)

Bolzati Cristina;Refosco Fiorenzo;Tisato Francesco;
2004

Abstract

Mono-cationic nitrido heterocomplexes of general formula [M(N)(DTC)(PNP)]+ (where M is 99Tc or Re, DTC is the mono-anionic form of a dithiocarbamate ligand, and PNP is a diphosphane ligand with a tertiary amine-containing five-membered spacer) were prepared by ligand-exchange reactions with the labile precursors [M(N)Cl2(PPh3)2] in dichloromethane/alcohol mixtures. The molecular structure of the representative rhenium complex [Re(N)(dedc)(pnp2)][PF6] (1) displays a distorted, square-pyramidal geometry with the dithiocarbamate sulfur and the diphosphane phosphorus atoms spanning the four coordination positions on the equatorial plane. If the additional interactions between the nitrido nitrogen and the weakly bonded trans N-diphosphane heteroatom, the molecular geometry can be viewed as pseudo-octahedral. The structure in solution, as established by multinuclear NMR spectroscopy and ESI spectrometry, is monomeric, and identical to that shown in the solid state. Replacement of the phenyl groups on the phosphorous atoms in complexes 1, 2, 5, and 6 with alkyl groups modified neither the course of the reaction nor the composition of the resulting complexes. These results, together with the observation that no symmetrical complexes containing two identical bidentate ligands were produced in these reactions, strongly supports the conclusion that a mixed coordination sphere, composed by a combination of -donor and -acceptor atoms around the [MN]2+ group, constitutes a highly stable system. Compounds containing dangling alkyl-substituted groups in the outer sphere (3, 4, 7, and 8) were fully characterized by multinuclear NMR spectroscopy and ESI mass spectrometry.
2004
CHIMICA INORGANICA E DELLE SUPERFICI
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Technetium
Rhenium
Radiopharmaceuticals
NMR spectroscopy
P ligands
File in questo prodotto:
File Dimensione Formato  
prod_18459-doc_11211.pdf

solo utenti autorizzati

Descrizione: articolo pubblicato
Dimensione 292.66 kB
Formato Adobe PDF
292.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/163793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact