Abstract Electrochemical methods have proved to be particularly effective both for water detoxification (abatement of heavy metals and organic impurities) and sterilization, from natural resources to utilization points, combining these features with low costs and easier handling of equipments. The efficiency of electrochemical methods strongly depends on electrode nature, anodes being of particular importance because they must stand much more severe polarization conditions and have to exhibit good catalytic activity for complex reactions like oxygen and chlorine evolution. The present work is devoted to the preparation and characterization of mixed-oxide electrode coatings based on IrO2, RuO2 and SnO2, with the scope of finding optimal compositions guaranteeing longer service-life under the critical conditions where oxygen evolution is concomitant with chloride oxidation. # 2006 Elsevier B.V. All rights reserved.

Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology

L VázquezGómez;
2006

Abstract

Abstract Electrochemical methods have proved to be particularly effective both for water detoxification (abatement of heavy metals and organic impurities) and sterilization, from natural resources to utilization points, combining these features with low costs and easier handling of equipments. The efficiency of electrochemical methods strongly depends on electrode nature, anodes being of particular importance because they must stand much more severe polarization conditions and have to exhibit good catalytic activity for complex reactions like oxygen and chlorine evolution. The present work is devoted to the preparation and characterization of mixed-oxide electrode coatings based on IrO2, RuO2 and SnO2, with the scope of finding optimal compositions guaranteeing longer service-life under the critical conditions where oxygen evolution is concomitant with chloride oxidation. # 2006 Elsevier B.V. All rights reserved.
2006
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Electrocatalysis
Oxide electrodes
Chlorine evolution reaction
Oxygen evolution reaction
Water sterilization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/163928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact