Adsorbed polymers are widely used to suppress electroosmotic flow (EOF) in capillary electrophoresis (CE). Polymeric coatings, physisorbed onto the surface of the capillary wall, are often unstable under harsh conditions. This can be attributed to the reversible nature of the coating which becomes apparent when the adsorbed layer competes with a second species in the electrophoresis buffer solution for attachment/interaction with the capillary surface. In an effort to overcome the problem of coating instability, trimethoxysilane-modified polydimethylacrylamide was synthesized. This copolymer rapidly adsorbs on the wall from ultradilute aqueous solutions. After incubation at a temperature of 60° C silyl groups, which extend from the polymer backbone, form condensation bonds with the silanols on the capillary surface. This enables subsequent formation of strong covalent bonds between the copolymer and the capillary wall. In this research, we establish that physisorption of polymer chains to the surface is essential for close alignment of surface and polymer silane groups which facilitates the formation of covalent bonds.

Electroosmotic flow suppression in capillary electrophoresis: Chemisorption of trimethoxy silane-modified polydimethylacrylamide

Cretich M;Chiari M;
2005

Abstract

Adsorbed polymers are widely used to suppress electroosmotic flow (EOF) in capillary electrophoresis (CE). Polymeric coatings, physisorbed onto the surface of the capillary wall, are often unstable under harsh conditions. This can be attributed to the reversible nature of the coating which becomes apparent when the adsorbed layer competes with a second species in the electrophoresis buffer solution for attachment/interaction with the capillary surface. In an effort to overcome the problem of coating instability, trimethoxysilane-modified polydimethylacrylamide was synthesized. This copolymer rapidly adsorbs on the wall from ultradilute aqueous solutions. After incubation at a temperature of 60° C silyl groups, which extend from the polymer backbone, form condensation bonds with the silanols on the capillary surface. This enables subsequent formation of strong covalent bonds between the copolymer and the capillary wall. In this research, we establish that physisorption of polymer chains to the surface is essential for close alignment of surface and polymer silane groups which facilitates the formation of covalent bonds.
2005
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_17363-doc_7581.pdf

non disponibili

Descrizione: articolo
Dimensione 165.97 kB
Formato Adobe PDF
165.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/164330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 42
social impact