Enduracidin and ramoplanin belong to the large family of cyclodepsipeptide antibiotics, highly effective against Gram-positive bacteria. The primary and 3D solution structure of ramoplanin is already well known, and the primary structure of enduracidin has been determined by a combination of chemical and NMR spectroscopic methods. Both antibiotics share a similar peptide core of 17 amino acids and differ mainly in the length of the acyl chain and the presence of two D-mannose moieties in ramoplanin. Based on the high sequence homology with ramoplanin, the structure in solution of enduracidin is modeled as a cyclic peptide. The, tertiary structure thus obtained was refined. through molecular dynamics (MD) simulation, in which the interatomic NOE-derived distance restraints were imposed. MD simulations yielded a family of representative 3D structures (RMSD = 0.89), which highlighted a backbone geometry similar to that of ramoplanin in its beta-hairpin arrangement. In contrast, enduracidin displays a different arrangement of the side-chain and of the residues forming the hydrophobic core.
Structure elucidation and 3D solution conformation of the antibiotic enduracidin determined by NMR spectroscopy and molecular dynamics
Meli M;Colombo G
2005
Abstract
Enduracidin and ramoplanin belong to the large family of cyclodepsipeptide antibiotics, highly effective against Gram-positive bacteria. The primary and 3D solution structure of ramoplanin is already well known, and the primary structure of enduracidin has been determined by a combination of chemical and NMR spectroscopic methods. Both antibiotics share a similar peptide core of 17 amino acids and differ mainly in the length of the acyl chain and the presence of two D-mannose moieties in ramoplanin. Based on the high sequence homology with ramoplanin, the structure in solution of enduracidin is modeled as a cyclic peptide. The, tertiary structure thus obtained was refined. through molecular dynamics (MD) simulation, in which the interatomic NOE-derived distance restraints were imposed. MD simulations yielded a family of representative 3D structures (RMSD = 0.89), which highlighted a backbone geometry similar to that of ramoplanin in its beta-hairpin arrangement. In contrast, enduracidin displays a different arrangement of the side-chain and of the residues forming the hydrophobic core.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.