We have investigated the prefibrillar state of salmon (s) and human (h) calcitonin (CT). Size exclusion chromatography at pH 3.3 and 7.4 indicates that sCT is present in solution as a dimer, whereas hCT elutes as a monomer at pH 3.3 and as monomer-dimer at pH 7.4. Guanidine hydrochloride unfolding experiments show that dimerization is stabilized by hydrophobic interactions. We investigated the dimeric structure by multidimensional nuclear magnetic resonance spectroscopy and calculations by using an sCT mutant (LAsCT) in which Pro23 and Arg24 were substituted for Leu23 and Ala24. As indicated by the Leu9-Tyr27 and Leu12-Leu19 contacts, the mutated hormone forms a head-to-tail dimer whose basic unit is an -helix in the region Leu12- Tyr22. The solution behavior of LAsCT is identical to that of sCT, so the dimeric structure can safely be extended to sCT: we believe that such a structure inhibits fibril maturation in sCT. No stable dimer was observed for hCT, which we attributed to the absence of a defined helical structure. However, we suggest that intermolecular collisions of short ordered regions (for example, a sequence of turns) in hCT favors intermolecular contacts, and specific orientation can be obtained through hydrogen bond formation involving Tyr12, Phe16, and Phe19, with the aromatic ring acting as an acceptor. Taken together, our results indicate that hCT fibrillation can be reduced by favoring a helical dimer, obtainable by replacing the three aromatic amino acids with leucines.

Modulating calcitonin fibrillogenesis: an antiparallel a-helical dimer inhibits fibrillation of salmon calcitonin.

Andreotti G;Motta A
2004

Abstract

We have investigated the prefibrillar state of salmon (s) and human (h) calcitonin (CT). Size exclusion chromatography at pH 3.3 and 7.4 indicates that sCT is present in solution as a dimer, whereas hCT elutes as a monomer at pH 3.3 and as monomer-dimer at pH 7.4. Guanidine hydrochloride unfolding experiments show that dimerization is stabilized by hydrophobic interactions. We investigated the dimeric structure by multidimensional nuclear magnetic resonance spectroscopy and calculations by using an sCT mutant (LAsCT) in which Pro23 and Arg24 were substituted for Leu23 and Ala24. As indicated by the Leu9-Tyr27 and Leu12-Leu19 contacts, the mutated hormone forms a head-to-tail dimer whose basic unit is an -helix in the region Leu12- Tyr22. The solution behavior of LAsCT is identical to that of sCT, so the dimeric structure can safely be extended to sCT: we believe that such a structure inhibits fibril maturation in sCT. No stable dimer was observed for hCT, which we attributed to the absence of a defined helical structure. However, we suggest that intermolecular collisions of short ordered regions (for example, a sequence of turns) in hCT favors intermolecular contacts, and specific orientation can be obtained through hydrogen bond formation involving Tyr12, Phe16, and Phe19, with the aromatic ring acting as an acceptor. Taken together, our results indicate that hCT fibrillation can be reduced by favoring a helical dimer, obtainable by replacing the three aromatic amino acids with leucines.
2004
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/164847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact