Abstract: The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular CA(2+) pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCalpha) to the increase or reduction of mitochondrial Ca2+ uptake (PKCzeta and PKCbeta/PKCdelta, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers.

Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes

Di Benedetto G;
2004

Abstract

Abstract: The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular CA(2+) pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCalpha) to the increase or reduction of mitochondrial Ca2+ uptake (PKCzeta and PKCbeta/PKCdelta, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers.
2004
organelle
aequorin
calcium
kinases
signal transduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/165120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 72
social impact