We consider a class of non-linear mixed integer programs with $n$ integer variables and $k$ continuous variables. Solving instances from this class to optimality is an NP-hard problem. We show that for the cases with $k=1$ and $k=2$, every optimal solution is integral. In contrast to this, for every $k\geq3$ there exist instances where every optimal solution takes non-integral values.

The mathematics of playing golf, or: a new class of difficult non-linear mixed integer programs

Rinaldi G;
2002

Abstract

We consider a class of non-linear mixed integer programs with $n$ integer variables and $k$ continuous variables. Solving instances from this class to optimality is an NP-hard problem. We show that for the cases with $k=1$ and $k=2$, every optimal solution is integral. In contrast to this, for every $k\geq3$ there exist instances where every optimal solution takes non-integral values.
2002
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/165504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact