It is a longstanding open problem whether there exists a polynomial size description of the perfect matching polytope. We give a partial answer to this question by proving the following result. The polyhedron defined by the constraints of the perfect matching polytope which are active at a given perfect matching can be obtained as the projection of a compact polyhedron. Thus there exists a compact linear program which is unbounded if and only if the perfect matching is not optimal with respect to a given edge weight. This result provides a simple reduction of the maximum weight perfect matching problem to compact linear programming.

A compact linear program for testing optimality of perfect matching

Ventura P;
2003

Abstract

It is a longstanding open problem whether there exists a polynomial size description of the perfect matching polytope. We give a partial answer to this question by proving the following result. The polyhedron defined by the constraints of the perfect matching polytope which are active at a given perfect matching can be obtained as the projection of a compact polyhedron. Thus there exists a compact linear program which is unbounded if and only if the perfect matching is not optimal with respect to a given edge weight. This result provides a simple reduction of the maximum weight perfect matching problem to compact linear programming.
2003
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/165536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact