MEMS micro heater devices capable of long-term operation at temperatures up to 1000 degrees C are presented. The enhanced long-term stability has been achieved by employing antimony-doped tin oxide (SnO2:Sb) as a substitute for the conventionally used noble metal heater resistors. A detailed investigation of its high-temperature stability reveals that degradation is caused by out-diffusion of Sb impurities from the SnO2 film. (c) 2007 Elsevier B.V. All rights reserved.
SnO2 : Sb - A new material for high-temperature MEMS heater applications: Performance and limitations
Sberveglieri G;
2007
Abstract
MEMS micro heater devices capable of long-term operation at temperatures up to 1000 degrees C are presented. The enhanced long-term stability has been achieved by employing antimony-doped tin oxide (SnO2:Sb) as a substitute for the conventionally used noble metal heater resistors. A detailed investigation of its high-temperature stability reveals that degradation is caused by out-diffusion of Sb impurities from the SnO2 film. (c) 2007 Elsevier B.V. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.