We study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair of periodically flashed optical lattices. We first prove that in the noninteracting case this system can present a quantum symmetry which forbids the ratchet effect classically expected. We then show how many-body atom-atom interactions, treated within the mean-field approximation, can break this quantum symmetry, thus generating directed transport.
Interaction-induced quantum ratchet in a Bose-Einstein condensate
Benenti G;
2007
Abstract
We study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair of periodically flashed optical lattices. We first prove that in the noninteracting case this system can present a quantum symmetry which forbids the ratchet effect classically expected. We then show how many-body atom-atom interactions, treated within the mean-field approximation, can break this quantum symmetry, thus generating directed transport.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


