The general aim of this study is to test the reliability of polarizable model potentials for the prediction of vibrational (infrared and Raman) spectra in highly anharmonic systems such as high temperature crystalline phases. By using an ab initio parametrized interatomic potential for SiO2 and molecular dynamics simulations, we calculate the infrared and Raman spectra for quartz, cristobalite, and stishovite at various thermodynamic conditions. The model is found to perform very well in the prediction of infrared spectra. Raman peak positions are also reproduced very well by the model; however, Raman intensities calculated by explicitly taking the derivative of the polarizability with respect to the atomic displacements are found to be in poorer agreement than intensities calculated using a parametrized 'bond polarizability' model. Calculated spectra for the high temperature beta phases, where the role of dynamical disorder and anharmonicities is predominant, are found to be in excellent agreement with experiments. For the octahedral phases, our simulations are able to reproduce changes in the Raman spectra across the rutile-to-CaCl2 transition around 50 GPa, including the observed phonon softening. (c) 2006 American Institute of Physics.

Infrared and Raman spectra of silica polymorphs from an ab initio parametrized polarizable force field

2006

Abstract

The general aim of this study is to test the reliability of polarizable model potentials for the prediction of vibrational (infrared and Raman) spectra in highly anharmonic systems such as high temperature crystalline phases. By using an ab initio parametrized interatomic potential for SiO2 and molecular dynamics simulations, we calculate the infrared and Raman spectra for quartz, cristobalite, and stishovite at various thermodynamic conditions. The model is found to perform very well in the prediction of infrared spectra. Raman peak positions are also reproduced very well by the model; however, Raman intensities calculated by explicitly taking the derivative of the polarizability with respect to the atomic displacements are found to be in poorer agreement than intensities calculated using a parametrized 'bond polarizability' model. Calculated spectra for the high temperature beta phases, where the role of dynamical disorder and anharmonicities is predominant, are found to be in excellent agreement with experiments. For the octahedral phases, our simulations are able to reproduce changes in the Raman spectra across the rutile-to-CaCl2 transition around 50 GPa, including the observed phonon softening. (c) 2006 American Institute of Physics.
2006
INFM
MOLECULAR-DYNAMICS SIMULATIONS
BETA-PHASE-TRANSITION
ALPHA-CRISTOBALITE
AMORPHOUS SIO2
IONIC SYSTEMS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/165815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact