The transformation of SiO2 from low pressure tetrahedral phases into denser octahedral phases takes place via the collapse of the oxygen sublattice into a close-packed arrangement. The transition paths and the resulting products are known to be affected by the presence of anisotropic stresses, which are difficult to control, so interpretation of the experimental results is problematic. Based on nonhydrostatic molecular dynamics simulations, we show that the collapse of the oxygen sublattice in the specific case of cristobalite is concomitant with the disappearance of tetrahedral units and that non hydrostatic stresses can be tuned to yield phases with different oxygen close-packed sublattices, including the alpha-PbO2-like phase, for which we provide a microscopic formation path, and phases with a cubic close packing, like anatase, not seen in experiments yet.

Tuning oxygen packing in silica by nonhydrostatic pressure

2007

Abstract

The transformation of SiO2 from low pressure tetrahedral phases into denser octahedral phases takes place via the collapse of the oxygen sublattice into a close-packed arrangement. The transition paths and the resulting products are known to be affected by the presence of anisotropic stresses, which are difficult to control, so interpretation of the experimental results is problematic. Based on nonhydrostatic molecular dynamics simulations, we show that the collapse of the oxygen sublattice in the specific case of cristobalite is concomitant with the disappearance of tetrahedral units and that non hydrostatic stresses can be tuned to yield phases with different oxygen close-packed sublattices, including the alpha-PbO2-like phase, for which we provide a microscopic formation path, and phases with a cubic close packing, like anatase, not seen in experiments yet.
2007
INFM
STRUCTURAL TRANSFORMATIONS
METEORITE SHERGOTTY
AB-INITIO
PHASE
CRISTOBALITE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/165889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact