The generic term "quorum sensing" has been adopted to describe the bacterial cell-to-cell communication mechanism which coordinates gene expression when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules that diffuse in and out of bacterial cells. There are few reports about this mechanism in Archaea. We report the isolation and chemical characterization of small molecules belonging to class of diketopiperazines (DKPs) in Haloterrigena hispanica, an extremely halophilic archaeon. One of the DKPs isolated, the compound cyclo-(L-prolyl-L-valine) activated N-acyl homoserine lactone (AHL) bioreporters, indicating that Archaea may have the ability to interact with AHL-producing bacteria within mixed communities.
Diketopiperazines Produced by the Halophilic Archaeon, _Haloterrigena hispanica_, Activate AHL Bioreporters
G Tommonaro;G R Abbamondi;C Iodice;S De Rosa
2012
Abstract
The generic term "quorum sensing" has been adopted to describe the bacterial cell-to-cell communication mechanism which coordinates gene expression when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules that diffuse in and out of bacterial cells. There are few reports about this mechanism in Archaea. We report the isolation and chemical characterization of small molecules belonging to class of diketopiperazines (DKPs) in Haloterrigena hispanica, an extremely halophilic archaeon. One of the DKPs isolated, the compound cyclo-(L-prolyl-L-valine) activated N-acyl homoserine lactone (AHL) bioreporters, indicating that Archaea may have the ability to interact with AHL-producing bacteria within mixed communities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.