We develop a semiclassical field method for the study of the weakly interacting Bose gas at finite temperature which, contrary to the usual classical field model, does not suffer from an ultraviolet cutoff dependence. We apply the method to the study of thermal vortices in spatially homogeneous, two-dimensional systems. We present numerical results for the vortex density and the vortex pair distribution function. Insight in the physics of the system is obtained by comparing the numerical results with the predictions of simple analytical models. In particular, we calculate the activation energy required to form a vortex pair at low temperature.
Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions
Carusotto I;
2007
Abstract
We develop a semiclassical field method for the study of the weakly interacting Bose gas at finite temperature which, contrary to the usual classical field model, does not suffer from an ultraviolet cutoff dependence. We apply the method to the study of thermal vortices in spatially homogeneous, two-dimensional systems. We present numerical results for the vortex density and the vortex pair distribution function. Insight in the physics of the system is obtained by comparing the numerical results with the predictions of simple analytical models. In particular, we calculate the activation energy required to form a vortex pair at low temperature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.