This note investigates the boundary between polynomially-solvable Max Cut and NP Hard Max Cut instances when they are classified only on the basis of the sign pattern of the objective function coefficients, i.e., of the orthant containing the objective function vector. It turns out that the matching number of the subgraph induced by the positive edges is the key parameter that allows us to differentiate between polynomially-solvable and hard instances of the problem. We give some applications of the polynomially solvable cases.

Easy and Difficult Objective Functions for Max Cut

Rinaldi G
2003

Abstract

This note investigates the boundary between polynomially-solvable Max Cut and NP Hard Max Cut instances when they are classified only on the basis of the sign pattern of the objective function coefficients, i.e., of the orthant containing the objective function vector. It turns out that the matching number of the subgraph induced by the positive edges is the key parameter that allows us to differentiate between polynomially-solvable and hard instances of the problem. We give some applications of the polynomially solvable cases.
2003
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact