We present the design and fabrication of active and passive two-dimensional photonic crystal (2D-PC) devices based on GaAs/ AlGaAs slab waveguide nano-resonators. The active device is a vertical microcavity exploiting a 2D-PC of air holes arranged in a circular lattice configuration in a GaAs/AlGaAs slab waveguide. The active medium embedded in the waveguide is composed of InAs/GaAs quantum dots emitting around 1300 nm. The investigated passive device is a dual wavelength division splitter exploiting 2D-PC resonators. The spectral response of the active circular microcavity and the transmission characteristics at the different ports of the dual wavelength splitter have been evaluated by a finite-difference time-domain method based computer code. A detailed description of the nanotechnology processes necessary for the fabrication of both active and passive 2D-PC devices is also reported. (c) 2006 Elsevier B.V. All rights reserved.

Design and fabrication of active and passive photonic crystal resonators

Salhi A;Passaseo A;Marrocco V;
2006

Abstract

We present the design and fabrication of active and passive two-dimensional photonic crystal (2D-PC) devices based on GaAs/ AlGaAs slab waveguide nano-resonators. The active device is a vertical microcavity exploiting a 2D-PC of air holes arranged in a circular lattice configuration in a GaAs/AlGaAs slab waveguide. The active medium embedded in the waveguide is composed of InAs/GaAs quantum dots emitting around 1300 nm. The investigated passive device is a dual wavelength division splitter exploiting 2D-PC resonators. The spectral response of the active circular microcavity and the transmission characteristics at the different ports of the dual wavelength splitter have been evaluated by a finite-difference time-domain method based computer code. A detailed description of the nanotechnology processes necessary for the fabrication of both active and passive 2D-PC devices is also reported. (c) 2006 Elsevier B.V. All rights reserved.
2006
Istituto di Nanotecnologia - NANOTEC
INFM
Istituto Nanoscienze - NANO
MODES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact