A double SQUID qubit (Superconducting Quantum Interference Device) can be handled by applying microwave trains, but also by using fast flux pulses. In this second case the manipulation is based on the fast and radical modification of the qubit potential shape that induces non-adiabatic transitions between the computational states (the two lowest energy eigenstates), still avoiding transitions to upper levels. This modality is interesting because it allows faster operations with respect to other techniques, but also because it gives access to interesting nontrivial physical features, concerning in particular decoherence and adiabaticity. About decoherence, we observed experimentally the existence of an "optimal" bias region and the transition between two distinct decoherence regimes. These results can be explained by considering the effect of first and second order slow fluctuations which dominate on high frequency noise contributions. This allows a deep insight in the qubit decoherence mechanisms.
Decay Features of Coherent Oscillations Observed in a Superconducting Qubit Manipulated by Fast Flux Pulses
F Chiarello;MG Castellano;G Torrioli
2012
Abstract
A double SQUID qubit (Superconducting Quantum Interference Device) can be handled by applying microwave trains, but also by using fast flux pulses. In this second case the manipulation is based on the fast and radical modification of the qubit potential shape that induces non-adiabatic transitions between the computational states (the two lowest energy eigenstates), still avoiding transitions to upper levels. This modality is interesting because it allows faster operations with respect to other techniques, but also because it gives access to interesting nontrivial physical features, concerning in particular decoherence and adiabaticity. About decoherence, we observed experimentally the existence of an "optimal" bias region and the transition between two distinct decoherence regimes. These results can be explained by considering the effect of first and second order slow fluctuations which dominate on high frequency noise contributions. This allows a deep insight in the qubit decoherence mechanisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.