Active learning refers to the task of devising a ranking function that, given a classifier trained from relatively few training examples, ranks a set of additional unlabeled examples in terms of how much further information they would carry, once manually labeled, for retraining a (hopefully) better classifier. Research on active learning in text classification has so far concentrated on single-label classification; active learning for multi-label classification, instead, has either been tackled in a simulated (and, we contend, non-realistic) way, or neglected tout court. In this paper we aim to fill this gap by examining a number of realistic strategies for tackling active learning for multi-label classification. Each such strategy consists of a rule for combining the outputs returned by the individual binary classifiers as a result of classifying a given unlabeled document. We present the results of extensive experiments in which we test these strategies on two standard text classification datasets.
Active learning strategies for multi-label text classification
Esuli A;Sebastiani F
2008
Abstract
Active learning refers to the task of devising a ranking function that, given a classifier trained from relatively few training examples, ranks a set of additional unlabeled examples in terms of how much further information they would carry, once manually labeled, for retraining a (hopefully) better classifier. Research on active learning in text classification has so far concentrated on single-label classification; active learning for multi-label classification, instead, has either been tackled in a simulated (and, we contend, non-realistic) way, or neglected tout court. In this paper we aim to fill this gap by examining a number of realistic strategies for tackling active learning for multi-label classification. Each such strategy consists of a rule for combining the outputs returned by the individual binary classifiers as a result of classifying a given unlabeled document. We present the results of extensive experiments in which we test these strategies on two standard text classification datasets.File | Dimensione | Formato | |
---|---|---|---|
prod_160970-doc_129465.pdf
accesso aperto
Descrizione: Active learning strategies for multi-label text classification
Dimensione
184.57 kB
Formato
Adobe PDF
|
184.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.