We propose a method by means of which supervised learning algorithms that only accept binary input can be extended to use ordinal (i.e., integer-valued) input. This is much needed in text classification, since it becomes thus possible to endow these learning devices with term frequency information, rather than just information on the presence/absence of the term in the document. We test two different learners based on ``boosting'', and show that the use of our method allows them to obtain effectiveness gains. We also show that one of these boosting methods, once endowed with the representations generated by our method, outperforms an SVM learner with tfidf-weighted input.

Encoding ordinal features into binary features for text classification

Esuli A;Sebastiani F
2008

Abstract

We propose a method by means of which supervised learning algorithms that only accept binary input can be extended to use ordinal (i.e., integer-valued) input. This is much needed in text classification, since it becomes thus possible to endow these learning devices with term frequency information, rather than just information on the presence/absence of the term in the document. We test two different learners based on ``boosting'', and show that the use of our method allows them to obtain effectiveness gains. We also show that one of these boosting methods, once endowed with the representations generated by our method, outperforms an SVM learner with tfidf-weighted input.
2008
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Supervised learning
Ordinal features
Integer-valued features
Segmentation of ordinal features
Feature partitioning
Boosting
File in questo prodotto:
File Dimensione Formato  
prod_160983-doc_129505.pdf

accesso aperto

Descrizione: Encoding ordinal features into binary features for text classification
Dimensione 128.6 kB
Formato Adobe PDF
128.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact