The friction between concentric carbon nanotubes sliding one inside the other has been widely studied and simulated, but not so far using external force as the driving variable. Our molecular dynamics (MD) simulations show that as the pulling force grows, the sliding velocity increases by jumps and plateaus rather than continuously as expected. Dramatic friction peaks [similar to that recently noted by P. Tangney, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97 (2006) 195901] which develop around some preferential sliding velocities, are at the origin of this phenomenon. The (stable) rising edge of the peak produces a velocity plateau; the (unstable) dropping edge produces a jump to the nearest stable branch. The outcome is reminiscent of conduction in ionized gases, the plateau corresponding to a current stabilization against voltage variations, the jump corresponding to a discharge or breakdown. (c) 2007 Elsevier B.V. All rights reserved.

Velocity plateaus and jumps in carbon nanotube sliding

Tartaglino U;Santoro GE;Tosatti E
2007

Abstract

The friction between concentric carbon nanotubes sliding one inside the other has been widely studied and simulated, but not so far using external force as the driving variable. Our molecular dynamics (MD) simulations show that as the pulling force grows, the sliding velocity increases by jumps and plateaus rather than continuously as expected. Dramatic friction peaks [similar to that recently noted by P. Tangney, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97 (2006) 195901] which develop around some preferential sliding velocities, are at the origin of this phenomenon. The (stable) rising edge of the peak produces a velocity plateau; the (unstable) dropping edge produces a jump to the nearest stable branch. The outcome is reminiscent of conduction in ionized gases, the plateau corresponding to a current stabilization against voltage variations, the jump corresponding to a discharge or breakdown. (c) 2007 Elsevier B.V. All rights reserved.
2007
INFM
MOLECULAR-DYNAMICS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact