By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.

Atomic scale simulations of vapor cooled carbon clusters

Colombo L
2007

Abstract

By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.
2007
INFM
MOLECULAR-DYNAMICS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact