Oestadiol valerate (EV)-induced polycystic ovaries (PCO) in rats cause anovulation and cystic ovarian morphology. Denervation of ovarian sympathetic nerves restores ovulatory disruption. In the present study, we determined whether 5 weeks of voluntary exercise influence ovarian morphology and the expression of sympathetic markers in the EV-induced PCO rat model. The effect of exercise on (i) ovarian morphology; (ii) mRNA and protein expression of nerve growth factor (NGF); and (iii) mRNA and number of ovarian-expressing cells for the NGF receptor (p75 neurotrophin receptor) and the alpha(1a)-, alpha(1b)-, alpha(1d)- and beta(2)-adrenergic receptors (ARs) in rats with EV-induced PCO was evaluated. PCO was induced by a single i.m. injection of EV, and controls were injected with oil alone in adult cycling rats. The rats were divided into four groups: (i) control (oil); (ii) exercise group (oil + exercise); (iii) a PCO group (EV); and (iv) a PCO exercise group (EV + exercise). The exercise and PCO exercise groups ran voluntarily for 5 weeks in computer-monitored wheels placed in the cages where they were housed. The results obtained indicated that ovarian morphology was almost normalised in the PCO exercise group; NGF mRNA and protein concentrations were normalised in the PCO exercise group; high numbers of NGF receptor expressing cells in PCO ovaries were lowered by exercise; and the number of immunopositive cells of the different AR subtypes were all reduced after exercise in the PCO group, except for the alpha(1b)- and beta(2)-AR whereas the mRNA levels were unaffected, indicating transcriptional regulation. In conclusion, our data indicate a beneficial effect of regular exercise, as a modulator of ovarian sympathetic innervation, in the prevention and treatment of human PCOS.
Effect of exercise on ovarian morphology and expression of nerve growth factor and alpha(1)- and beta(2)-adrenergic receptors in rats with steroid-induced polycystic ovaries.
Manni L;Aloe L;
2005
Abstract
Oestadiol valerate (EV)-induced polycystic ovaries (PCO) in rats cause anovulation and cystic ovarian morphology. Denervation of ovarian sympathetic nerves restores ovulatory disruption. In the present study, we determined whether 5 weeks of voluntary exercise influence ovarian morphology and the expression of sympathetic markers in the EV-induced PCO rat model. The effect of exercise on (i) ovarian morphology; (ii) mRNA and protein expression of nerve growth factor (NGF); and (iii) mRNA and number of ovarian-expressing cells for the NGF receptor (p75 neurotrophin receptor) and the alpha(1a)-, alpha(1b)-, alpha(1d)- and beta(2)-adrenergic receptors (ARs) in rats with EV-induced PCO was evaluated. PCO was induced by a single i.m. injection of EV, and controls were injected with oil alone in adult cycling rats. The rats were divided into four groups: (i) control (oil); (ii) exercise group (oil + exercise); (iii) a PCO group (EV); and (iv) a PCO exercise group (EV + exercise). The exercise and PCO exercise groups ran voluntarily for 5 weeks in computer-monitored wheels placed in the cages where they were housed. The results obtained indicated that ovarian morphology was almost normalised in the PCO exercise group; NGF mRNA and protein concentrations were normalised in the PCO exercise group; high numbers of NGF receptor expressing cells in PCO ovaries were lowered by exercise; and the number of immunopositive cells of the different AR subtypes were all reduced after exercise in the PCO group, except for the alpha(1b)- and beta(2)-AR whereas the mRNA levels were unaffected, indicating transcriptional regulation. In conclusion, our data indicate a beneficial effect of regular exercise, as a modulator of ovarian sympathetic innervation, in the prevention and treatment of human PCOS.File | Dimensione | Formato | |
---|---|---|---|
prod_4622-doc_10398.pdf
solo utenti autorizzati
Descrizione: articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
835.53 kB
Formato
Adobe PDF
|
835.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.