Macrophages play an essential role in the immune response to Mycobacterium tuberculosis (Mtb). Previous transcriptome surveys, by means of micro- and macroarrays, investigated the cellular gene expression profile during the early phases of infection (within 48 hr). However, Mtb remains within the host macrophages for a longer period, continuing to influence the macrophage gene expression and, consequently, the environment in which it persists. Therefore, we studied the transcription patterns of human macrophages for up to 7 days after infection with Mtb. We used a macroarray approach to study 858 human genes involved in immunoregulation, and we confirmed by quantitative real-time reverse transcriptase polymerase chain reaction (q-rt RT-PCR) and by enzyme-linked immunosorbent assay the most relevant modulations. We constantly observed the up-regulation in infected macrophages versus uninfected, of the following genes: interleukin-1 beta and interleukin-8, macrophage inflammatory protein-1 alpha, growth-related oncogene-beta, epithelial cell-derived neutrophil-activating peptide-78, macrophage-derived chemokine, and matrix metalloproteinase-7; whereas macrophage colony-stimulating factor-receptor and CD4 were down-regulated in infected macrophages. Mtb is able to withstand this intense cytokine microenvironment and to survive inside the human macrophage. Therefore we simultaneously investigated by q-rt RT-PCR the modulation of five mycobacterial genes: the alternative sigma factors sigA, sigE and sigG, the alpha-crystallin (acr) and the superoxide dismutase C (sodC) involved in survival mechanisms. The identified host and mycobacterial genes that were expressed until 7 days after infection, could have a role in the interplay between the host immune defences and the bacterial escape mechanisms.

Gene expression profiling of human macrophages at late time of infection with Mycobacterium tuberculosis.

Cappelli G;Serafino A;Mariani F
2006

Abstract

Macrophages play an essential role in the immune response to Mycobacterium tuberculosis (Mtb). Previous transcriptome surveys, by means of micro- and macroarrays, investigated the cellular gene expression profile during the early phases of infection (within 48 hr). However, Mtb remains within the host macrophages for a longer period, continuing to influence the macrophage gene expression and, consequently, the environment in which it persists. Therefore, we studied the transcription patterns of human macrophages for up to 7 days after infection with Mtb. We used a macroarray approach to study 858 human genes involved in immunoregulation, and we confirmed by quantitative real-time reverse transcriptase polymerase chain reaction (q-rt RT-PCR) and by enzyme-linked immunosorbent assay the most relevant modulations. We constantly observed the up-regulation in infected macrophages versus uninfected, of the following genes: interleukin-1 beta and interleukin-8, macrophage inflammatory protein-1 alpha, growth-related oncogene-beta, epithelial cell-derived neutrophil-activating peptide-78, macrophage-derived chemokine, and matrix metalloproteinase-7; whereas macrophage colony-stimulating factor-receptor and CD4 were down-regulated in infected macrophages. Mtb is able to withstand this intense cytokine microenvironment and to survive inside the human macrophage. Therefore we simultaneously investigated by q-rt RT-PCR the modulation of five mycobacterial genes: the alternative sigma factors sigA, sigE and sigG, the alpha-crystallin (acr) and the superoxide dismutase C (sodC) involved in survival mechanisms. The identified host and mycobacterial genes that were expressed until 7 days after infection, could have a role in the interplay between the host immune defences and the bacterial escape mechanisms.
2006
NEUROBIOLOGIA E MEDICINA MOLECOLARE
chemokines
cytokines
host–pathogen interplay
human phagocytes
virulent mycobacteria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/166900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact