The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and ? or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of b-dystroglycan (691-719), and approximately 15 amino acids of a-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wildtype alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the a-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan- transfected 293-Ebna cells.

Concerted mutation of Phe residues belonging to the beta-dystroglycan ectodomain strongly inhibits the interaction with alpha-dystroglycan in vitro

Sciandra F;Giardina B;Brancaccio A
2006

Abstract

The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and ? or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of b-dystroglycan (691-719), and approximately 15 amino acids of a-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wildtype alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the a-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan- transfected 293-Ebna cells.
2006
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_17427-doc_5353.pdf

non disponibili

Descrizione: Bozzi2006_articolo pubblicato
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/167407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact