We report on a statistical approach to mode-locking transitions of nanostructured laser cavities characterized by an enhanced density of states. We show that the equations for the interacting modes can be mapped onto a statistical model exhibiting a first-order thermodynamic transition, with the average mode energy playing the role of inverse temperature. The transition corresponds to a phase locking of modes. Extended modes lead to a mean-field-like model, while in the presence of localized modes, as due to a small disorder, the model has short-range interactions. We show that simple scaling arguments lead to observable differences between transitions involving extended modes and those involving localized modes. We link the thermodynamic transition to a topological singularity of the phase space, as previously reported for similar models. Finally, we solve the dynamics of the model, predicting a jump in the relaxation time of the coherence functions at the transition.

Mode-locking transitions in nanostructured weakly disordered lasers

L Angelani;C Conti;G Ruocco;
2007

Abstract

We report on a statistical approach to mode-locking transitions of nanostructured laser cavities characterized by an enhanced density of states. We show that the equations for the interacting modes can be mapped onto a statistical model exhibiting a first-order thermodynamic transition, with the average mode energy playing the role of inverse temperature. The transition corresponds to a phase locking of modes. Extended modes lead to a mean-field-like model, while in the presence of localized modes, as due to a small disorder, the model has short-range interactions. We show that simple scaling arguments lead to observable differences between transitions involving extended modes and those involving localized modes. We link the thermodynamic transition to a topological singularity of the phase space, as previously reported for similar models. Finally, we solve the dynamics of the model, predicting a jump in the relaxation time of the coherence functions at the transition.
2007
Istituto dei Sistemi Complessi - ISC
INFM
MEAN-FIELD MODEL
PHASE-TRANSITIONS
SUPERCOOLED LIQUIDS
DYNAMICS
SADDLES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/167543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact