Well-defined pi-conjugated oligomers play an important role in the field of organic electronics, because their precise chemical structure and conjugation length give rise to well-defined functional properties and facilitate control over their supramolecular organization. In this review, we present different complementary approaches for the control of molecular assembly into well-defined structures on the nanoscale, applied to oligothiophenes as a typical conjugated system. We consider self-assembly in solution, sublimation of individual molecules in the vapor phase, and aggregation in thin deposits from compounds molecularly dispersed in a solution. We demonstrate that the development of substituted, soluble pi-conjugated materials allows not only a control of their organization in the solid state but also the possibility of determining the degree of order in solution. During these self-assembly processes, the interplay between the conjugated molecules, the solvent, and the substrate surface is of primary importance. Depending on the interactions between the molecules and the substrate, one-dimensional (nanowires) or two-dimensional (platelets) objects can be generated. The self-organization of conjugated building blocks in solution or on surfaces, leading to the construction of nanoscopic and mesoscopic architectures, represents a starting point for the construction of molecular electronics or even circuits, through surface patterning with nanometer-sized objects.

About oligothiophene self-assembly: From aggregation in solution to solid-state nanostructures

M Cavallini;F Biscarini;
2004

Abstract

Well-defined pi-conjugated oligomers play an important role in the field of organic electronics, because their precise chemical structure and conjugation length give rise to well-defined functional properties and facilitate control over their supramolecular organization. In this review, we present different complementary approaches for the control of molecular assembly into well-defined structures on the nanoscale, applied to oligothiophenes as a typical conjugated system. We consider self-assembly in solution, sublimation of individual molecules in the vapor phase, and aggregation in thin deposits from compounds molecularly dispersed in a solution. We demonstrate that the development of substituted, soluble pi-conjugated materials allows not only a control of their organization in the solid state but also the possibility of determining the degree of order in solution. During these self-assembly processes, the interplay between the conjugated molecules, the solvent, and the substrate surface is of primary importance. Depending on the interactions between the molecules and the substrate, one-dimensional (nanowires) or two-dimensional (platelets) objects can be generated. The self-organization of conjugated building blocks in solution or on surfaces, leading to the construction of nanoscopic and mesoscopic architectures, represents a starting point for the construction of molecular electronics or even circuits, through surface patterning with nanometer-sized objects.
2004
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
FIELD-EFFECT TRANSISTORS; LANGMUIR-BLODGETT-FILMS; OLIGOMER THIN-FILMS; CHIRAL SIDE-CHAINS; CONJUGATED POLYMERS; THIOPHENE OLIGOMERS; CHARGE-TRANSPORT; FORCE MICROSCOPY; MACROMOLECULAR STEREOCHEMISTRY; OPTOELECTRONIC DEVICES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/167856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact