A mechanical sensor based on a pentacene field effect transistor has been fabricated. The pressure dependence of the output current has been investigated by applying a mechanical stimulus by means of a pressurized air flow. Experimental results show a reversible current dependence on pressure. Data analysis suggests that variations of threshold voltage, mobility and contact resistance are responsible for current variations. Thanks to the flexibility of the substrate and the low cost of the technology, this device opens the way for flexible mechanical sensors that can be used in a variety of innovative applications such as e-textiles and robotic interfaces. (c) 2006 American Institute of Physics.

Pressure sensing by flexible, organic, field effect transistors

Bonfiglio A
2006

Abstract

A mechanical sensor based on a pentacene field effect transistor has been fabricated. The pressure dependence of the output current has been investigated by applying a mechanical stimulus by means of a pressurized air flow. Experimental results show a reversible current dependence on pressure. Data analysis suggests that variations of threshold voltage, mobility and contact resistance are responsible for current variations. Thanks to the flexibility of the substrate and the low cost of the technology, this device opens the way for flexible mechanical sensors that can be used in a variety of innovative applications such as e-textiles and robotic interfaces. (c) 2006 American Institute of Physics.
2006
INFM
THIN-FILM-TRANSISTORS
THRESHOLD VOLTAGE
ARTIFICIAL SKIN
LARGE-AREA
SENSORS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/168237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact