Mitotic spindle assembly is a highly regulated process, crucial to ensure the correct segregation of duplicated chromosomes in daughter cells and to avoid aneuploidy, a common feature of tumors. Among the most important spindle regulators is Aurora-A, a mitotic centrosomal kinase frequently overexpressed in tumors. Here, we investigated the role of Aurora-A in spindle pole organization in human cells. We show that RNA interference-mediated Aurora-A inactivation causes peri-centriolar material fragmentation in prometaphase, yield-ing the formation of spindles with supernumerary poles. This fragmentation does not necessarily involve centrioles and requires microtubules (MTs). Aurora-A-depleted prometaphases mislocalize the MT-stabilizing protein colonic hepatic tumor-overexpressed gene (ch-TOG), which abnormally accumulates at spindle poles, as well as the mitotic centromere-associated kinesin (MCAK), the major functional antagonist of ch-TOG, which delocalizes from poles. ch-TOG is required for extrapole formation in prometaphases lacking Aurora-A, because co-depletion of Aurora-A and ch-TOG mitigates the fragmented pole phenotype. These results indicate a novel function of Aurora-A, the regulation of ch-TOG and MCAK localization, and highlight a common pathway involving the three factors in control of spindle pole integrity.

Aurora-A and ch-TOG act in a common pathway in control of spindle pole integrity

Asteriti IA;Lavia P;Guarguaglini G
2008

Abstract

Mitotic spindle assembly is a highly regulated process, crucial to ensure the correct segregation of duplicated chromosomes in daughter cells and to avoid aneuploidy, a common feature of tumors. Among the most important spindle regulators is Aurora-A, a mitotic centrosomal kinase frequently overexpressed in tumors. Here, we investigated the role of Aurora-A in spindle pole organization in human cells. We show that RNA interference-mediated Aurora-A inactivation causes peri-centriolar material fragmentation in prometaphase, yield-ing the formation of spindles with supernumerary poles. This fragmentation does not necessarily involve centrioles and requires microtubules (MTs). Aurora-A-depleted prometaphases mislocalize the MT-stabilizing protein colonic hepatic tumor-overexpressed gene (ch-TOG), which abnormally accumulates at spindle poles, as well as the mitotic centromere-associated kinesin (MCAK), the major functional antagonist of ch-TOG, which delocalizes from poles. ch-TOG is required for extrapole formation in prometaphases lacking Aurora-A, because co-depletion of Aurora-A and ch-TOG mitigates the fragmented pole phenotype. These results indicate a novel function of Aurora-A, the regulation of ch-TOG and MCAK localization, and highlight a common pathway involving the three factors in control of spindle pole integrity.
2008
Istituto di Biologia e Patologia Molecolari - IBPM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/168453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact